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The gyrokinetic derivation of [A.M. Dimits, L.L. LoDestro,  D.H.E. Dubin, Phys. Fluids B4, 274 

(1992).] is extended to general equilibrium magnetic fields. The result is a practical set equations 

that is valid for large perturbation amplitudes [ ( )1q /T Oψ = , where v A cψ φ δ= − � �
] but 

which is much simpler, easier to implement, and has more straightforward expressions for its 

conservation properties than the equation sets derived in the large-flow orderings. Here, φ and 

Aδ � are the perturbed electrostatic and parallel magnetic potentials, v�  is the particle velocity, c is 

the speed of light, and T is the temperature.  The derivation is based on the quantity 

( ) 1q /Tε ρ λ ψ⊥≡ ≪  as the small expansion parameter, where ρ is the gyroradius and λ⊥ is 

the perpendicular wavelength. Physically, this means that the E B×  velocity and the component 

of the parallel velocity perpendicular to the equilibrium magnetic field are small compared to the 

thermal velocity. For nonlinear fluctuations saturated at mixing-length  levels (e.g., with 

q /T ~ Lψ λ⊥ , where L  is the equilibrium profile scale length), ε  is of order / Lρ  for all 

scales λ⊥  ranging from ρ  to  L , even though ( )1q /T Oψ =  for ~ Lλ⊥ . 
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I. Introduction 

 

Turbulence driven by instabilities with frequencies well below the ion cyclotron frequency and 

wavelengths of order or longer than the ion gyroradius are believed to be a key cause of 

anomalous transport that is observed in magnetic fusion plasmas. The presence of a strong 

ambient magnetic field in a plasma can, in many cases, be exploited to simplify the description 

of the plasma and the prediction of its behavior. In particular, if there is a dominant (both 

spatially and temporally) slowly varying magnetic field such that the gyro- (or “cyclotron” or  

“Larmor”) orbital motion of a charged particle is much more rapid than the rate of change of the 

electromagnetic fields (and the rate of any “scattering” processes) seen by the particle, then the 

particle’s magnetic moment is an adiabatic invariant. This fact was the basis for guiding-center 

theory
1
 and, later, gyrokinetic theory.

2-8
 In both cases, the temporal variation of the system is 

taken to be slow compared to the gyro frequency. In the guiding-center theory, the particle gyro-

orbit size is required to be small compared to all spatial scales of any inhomogeneities in the 

system, while the gyrokinetic theory permits perturbations with scales comparable to the gyro 

orbit size. 
 

Gyrokinetic-equation-based models have found wide use in the simulation of microturbulence 

and the resulting transport in magnetic fusion core plasmas.
6, 9-17

 The gyrokinetic equations are 

valid under certain “gyrokinetic orderings,” are faithful to the key kinetic (i.e., non-

hydrodynamic) physics, but reduce the dimensionality of the relevant phase space by one relative 

to the raw “full-dynamics” Vlasov-Fokker-Planck equation. This reduction in dimensionality 

(e.g., from 6 to 5 for spatially 3-dimensional systems) can result in a large corresponding 

reduction in the number of degrees of freedom (grid cells, nodes, basis functions, or particles) 

needed to discretize the phase-space density (“distribution”) function to a given level of 

accuracy. Accompanying this reduction is the removal of various high-frequency modes that are 

often not of central interest for the microturbulence or transport processes being simulated, but 

which may be numerically problematic.
6
 

 

The success of gyrokinetic simulation of magnetic fusion energy (MFE) core plasmas has 

motivated interest in extending such models to the (outer) edge and scrapeoff-layer regions,
18,19

 

as well as to other situations that stress the existing orderings. The length-scale separation 

between the radial plasma scales and the gyroradius scales in the MFE edge region is much less 

than in the core. Thus, while we expect that a gyrokinetic ordering may still be satisfied in many 

edge and scrapeoff-layer situations, it will be less easily satisfied than in the core. Additional 

care therefore needs to be taken to ensure that the particular expression and use of the ordering 

results in a set of equations that are valid for the conditions and phenomena expected in the edge.  

 

Some progress in this direction has been made by several authors.
20-24

 In Ref. 20, the derivation 

of the gyrokinetic equations was extended to allow for electrostatic potential perturbations to be 

of order the temperature, and therefore relative perturbations of order 1 in the moments of the 

distribution function. The work of Refs. 21-24 allowed for large E B×  flow velocities (of order 

thermal), as a separate static long-wavelength component. The seminal work in this direction by 

Artun and Tang
21

 allowed for a large static axisymmetric equilibrium velocity V  that satisfies 

0⋅ =V V∇ , and derived the appropriate gyrokinetic theory to first order (as is appropriate for 

core instability and turbulence studies) using an iterative approach.
4
 Brizard

22
 rederived and 
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extended some of the results of Ref. 21 to second order using a Hamiltonian formalism that 

allowed for equilibrium flow components with 0⋅ ≠V V∇ . Further results and applications of 

Brizard’s theory for electrostatic cases were derived by Hahm
23

 and for electromagnetic cases by 

Hahm and Madsen.
24

 Dimits
25

 rederived the gyrokinetic equations using a one-step method that 

removed the static and two-scale restrictions of Refs. 21-24, and made all (not just the short-

scale components) of the perturbations consistent with the evolving distribution function. This 

derivation showed that at second order, additional terms should be present in the Lagrangian 

under the assumptions and orderings of Refs. 21-24. These terms are cross terms involving the 

long-wavelength   E ×B  flow and the gyrophase dependent part of the short-wavelength 

potential, and were absent because of the two-step nature of the derivations employed. 

Subsequently, Parra and Calvo
26

 found that many such terms were needed in the second-order 

gyrokinetic theory, even in the standard “core-plasma” orderings. 

 

However, the fully consistent large-flow-ordering gyrokinetic equations derived in Ref. 25 are 

complicated and provide several unresolved challenges for numerical implementation, even in 

the simplified slab electrostatic case addressed in Ref. 25. First, because of several new terms in 

the symplectic (non-canonical) part of the Lagrangian, the equations of motion are much more 

challenging to compute from the Lagrangian. Second, the expression of the conserved energy as 

a manifestly positive-definite quantity in terms of the gyrocenter variables is more challenging. 

 

It is therefore of interest to investigate slightly less general orderings that may result in 

gyrokinetic equations that are more easily implemented. The ordering of Ref. 20 is such an 

ordering, and is expected to be adequate for edge and scrapeoff-layer conditions provided that 

the E B×  drift velocities are much less than the thermal velocity.  However, the derivation in 

Ref. 20 was for the simplified case of a slab magnetic field, although it allowed for 

electromagnetic perturbations. The present work extends this derivation to general (including 

toroidal) equilibrium magnetic fields. 

 

The fundamental requirement for the magnetic moment of a charged particle in a magnetic field 

to be an adiabatic invariant can be written as  

 

1
ω

ε =
Ω
≪ , (1) 

 

where ω  is the rate of change of the electromagnetic fields seen by the particle and qB McΩ =  

is the cyclotron frequency. Here, q  and M  are the particle charge and mass, B  is the magnetic 

field strength, and c  is the speed of light. The magnetic moment can be written to lowest order 

as 2 2Mv Bµ ⊥= , where v⊥ is the magnitude of the velocity perpendicular to the magnetic field. 

 

Most nonlinear gyrokinetic theories
4-8

 have as requirements that 

eq

1t

q f
~ ~ k ~

T F

δφ δ
ρ ε
�

≪ , (2) 

or an electromagnetic generalization thereof. Here, ( ),tδφ δφ= x  is the perturbed electrostatic 

potential, T  is the temperature, fδ  and eqF  are the perturbed and equilibrium phase-space 
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distribution functions, k�  is the characteristic parallel wavenumber, t tvρ = Ω  is the thermal 

gyroradius, tv T M= is the thermal (kinetic) particle speed, and ε  is the formal expansion 

parameter (“gyrokinetic smallness parameter”). The first condition of Eq. (2) is somewhat 

counterintuitive, as it suggests that the theory would break down if a large constant were added 

to δφ . A partial resolution of this apparent paradox lies in that these theories also formally order 

1tk ~ρ⊥ , where k⊥  is the characteristic perpendicular wavenumber. Equation (2) also formally 

rules out the application of the resulting gyrokinetic system to situations where large 

perturbations are present, for example in the outer edge region of magnetically confined plasmas, 

even if the frequency ordering for adiabatic invariance of the magnetic moment is satisfied.  

 

Dimits et. al.
20

 extended the canonical Hamiltonian gyrokinetic theory
5,8

 to allow for 

( )1q T Oδψ = , where v A cδψ δφ δ= − � �
, Aδ � is the perturbed parallel magnetic potential, v�  is 

the parallel particle velocity, and c is the speed of light. Ref. 20 is based on the new small 

parameter 

 

V

th

1t

V q
~ k
v T

ψ δψ
ε ρ⊥≃ ≪ . (3) 

 

Here Vψ  is a characteristic drift velocity associated with δψ , and includes the E B×  drift 

velocity associated with δφ  as well as the component of the parallel velocity perpendicular the 

equilibrium magnetic field. Under this ordering, δψ  can have large long-wavelength components 

and small short-wavelength components, as well as components of intermediate sizes at 

intermediate scales. In the present paper, we extend this derivation to general (including toroidal) 

equilibrium magnetic fields using noncanonical Hamiltonian methods. 

 

Parra and Catto
27 

derived the gyrokinetic equations for the case of a general equilibrium 

magnetic field and electrostatic under this ordering using an iterative method. The present work 

can be viewed as an extension of the derivation of Ref. 20 to include spatial variation in the 

equilibrium magnetic field, and of Ref. 27 to allow for electromagnetic perturbations. An 

advantage of our derivation compared to those that use the iterative approach is that through the 

use of a Hamiltonian method, our derivation easily provides conservation laws through 

Noether’s theorem and a variational formulation. 

 

A clear exposition of the basic noncanonical Hamiltonian perturbation method, along with the 

application to the derivation of the drift-kinetic equations for a particle in an inhomogeneous 

magnetic field was given by R. Littlejohn.
28

 This method was applied to the derivation of the 

gyrokinetic particle (characteristic), Vlasov, and Poisson equations for a plasma in a toroidal 

magnetic field by Hahm. 
7
 Subsequently, generalizations were made to a variety of situations, 

and this body of work has been reviewed by Brizard and Hahm.
8
  

 

We anticipate that our equations will be useful as a basis for simulation models for strong 

gradient regions in magnetized plasmas, e.g., edge and screapeoff layer regions as well as 

internal transport barriers where the separation between the profile and gyroradius scales is 
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relatively modest, and the significant fluctuations have wavelengths (of the order of 10-100 

gyroradii) that may be comparable to the scale of profile variations. 

 

 

II. Gyrokinetic equations in the drift ordering 
 

We consider a plasma in an inhomogeneous time dependent magnetic field 

0( ,t) ( ) ( ,t)δ= +B x B x B x ,  where ( ) ( ) ( )
0 0 0

ˆB=B x x b x  is an equilibrium magnetic field, 

and we define ( ) ( )
0 0

B =x B x , so that ( )
0
b̂ x  is the unit vector in the direction of 

0
B . We 

allow for electromagnetic perturbations consisting of a perturbed electrostatic potential 

( ),tδφ δφ= x  and a perturbed magnetic field in a low- β  ordering, where β  is the ratio of 

plasma to magnetic pressure, ( ) ( )
0

ˆ( ,t) A ,tδ δ = ×   B x x b x�∇ . The generalized potential 

v Aδψ δφ δ= −
� �  is taken to satisfy ( )0 0 th

1ˆ vδψ× Ω ≪b ∇∇∇∇ , where  
0 0

qB / McΩ =  is the 

gyrofrequency, q is the charge, M is the mass, and c is the speed of light. The electrostatic part 

of this ordering relation specifies that the ratio of the ×E B velocity 
0 0E B

ˆc Bδφ× = ×V b ∇  to 

the thermal speed is small, and the magnetic potential part specifies that the perpendicular 

velocity associated with magnetic flutter is small compared to the thermal speed or, equivalently, 

that the angle between the perturbed and unperturbed field lines is small. 

 

Additionally a strong-gradient-region ordering will be used for the perturbations and magnetic 

equilibrium. Under this ordering it is assumed that the spatial scale pL  over which the perturbed 

quantities can undergo an order-1 change is much shorter than the scale over which the magnetic 

equilibrium changes, which for example in a tokamak is typically the major radius R . Thus 

1pL R ≪ . 

The basic gyrokinetic ordering Eq.(5), applied to fluctuations of gyroradius scale implies the 

condition 

1pLρ ≪ . 

From typical mixing-length saturation rules, pL  can be associated with the profile scales 

associated with the driving gradients of the instabilities or associated turbulence under study. We 

will therefore use the following combination of the gyrokinetic and strong-gradient-region 

orderings 

1p p~ L ~ L Rε ρ ≪ .  (4) 

In the absence of the strong-gradient ordering, many unfamiliar terms arise at second order in the 

theory. These terms involve beating of the gyrophase dependent terms involving equilibrium 

magnetic field variation and the perturbations. This difficulty arises even in the “standard” 

gyrokinetic ordering [Calvo, 2010]. Instead of working with the combined orderings of Eq. (4), 

one could avoid these terms by working only to first order in the magnetic equilibrium 

dependences, irrespective of the order to which gyrokinetic expansion is taken on the 

perturbations. However, the use of the orderings in Eq. (4) is more systematic and transparent 
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with respect to the validity of the resulting theory. Consistent with Eq.(4),  and having the 

equilibrium magnetic field at zero order, we take 

 ( ) ( )20 th
qA Mcv O ε−= . 

 

Because the perturbed ( ×E B  and magnetic-flutter) velocities are small, they will not have a 

zero-order contribution to the symplectic (noncanonical) terms in the particle Lagrangian. The 

standard two-step procedure for deriving the Lagrangian can therefore be used. This begins with 

the unperturbed guiding-center phase-space variables  

 ( )Z ,U , ,µ θ= R � , 

where R  is the guiding center position, U � is the parallel velocity µ  is the magnetic moment, 

and θ  is the gyrophase angle. These evolve according to the Euler-Lagrange equations with the 

standard first order guiding-center phase-space Lagrangian for the motion of a charged particle 

in a static inhomogeneous magnetic field [Littlejohn]: 

( ) ( ) ( ) ( )
2

0 0
2

UˆL Z,Z,t U .µθ µ
    = + ⋅ − − + Ω    
 

A R b R R
�

�
ɺ ɺɺR   (5) 

We normalize energies and the Lagrangian to the thermal energy, (L ~T ), velocities (e.g., U � ) 

to the mean thermal velocity 
th

v , momenta to 
th

Mv , magnetic potentials (A , δA ) to the 

quantity 
thMv c q . Electrostatic potentials (φ ) will be normalized to T q . It can easily be 

checked that the Euler-Lagrange equations applied to Eq. (5) give the standard guiding-center 

equations of motion with parallel streaming, and the B∇  and curvature drifts. 

 

To the Lagrangian of Eq. (5), we add the perturbed Lagrangian 

( ) ( ) ( )0
ˆL A ,t d ,t dt.δ δ δφ= ⋅ −x b x x x�   (6) 

 

There are two standard choices for the perturbed guiding-center phase-space variables. In the 

“symplectic representation,” U �  is used as the parallel  momentum variable, while in the 

“canonical representation,” a perturbed canonical momentum p U Aδ= +� � �  is used. Thus, in 

the canonical representation the perturbed guiding-center coordinates and Lagrangian are 

( )Z ,p , ,µ θ= R �  and  

( ) ( ) ( )
( )

( ) ( )
2

0 0
2

p A ,t
ˆL Z,Z,t p ,t

δ
µθ µ δφ

   − +    = + ⋅ − − + Ω + +        

R
A R b R R R

� �

�
ɺ ɺɺR

ρ
ρ , 

while in the symplectic representation they are ( )Z ,U , ,µ θ= R �  and  

( ) ( ) ( ) ( ){ } ( ) ( )
2

0 0
2

UˆL Z,Z,t U A ,t ,t .δ µθ µ δφ
 
  = + + + ⋅ − − + Ω + +   
 

A R R b R R R
�

� �
ɺ ɺɺRρ ρ

 

We now proceed in the canonical representation, as this is somewhat simpler than the symplectic 

representation. First, separate δφ  and Aδ
�  

as 

( ) ( ) ( )t t tδφ δφ δφ µ θ+ = +R R Rɶρ, , , , ,
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and 

( ) ( ) ( )A t A t A tδ δ δ µ θ+ = +R R R
� � �

ɶρ, , , , ,
 

where ( ), ,tδφ µR  and ( )A tδ µR
�
, ,  are gyrophase-independent approximations to δφ  and Aδ �

. 

A convenient choice for these, and one which will simplify the subsequent derivations is  

 

( )

( )( )1

2

,t

ˆd ,t

δψ δψ

θδψ ρ θ
π

=

= +∫

R

R� ρ  

where 
( )
2

,
µ

ρ =
Ω R

 and ( )ˆ θρ  is a unit vector perpendicular to ( )0b̂ R  and which subtends an 

angle θ with respect to a fixed plane containing ( )0b̂ R . Then   

( ) ( ) ( )V thE Bt , ,t O V v ,δφ φ φ µ φ ε ×≡ + − ≈ ⋅ = =R Rɶ ρ, ρ ∇ρ ∇ρ ∇ρ ∇   (7) 

 
 

where Vε  is the small ordering parameter, as given in the ordering relation Eq. (1). Similarly,   

( ) ( ) ( )V 0A A t A , ,t A O B B .δ δ δ µ δ ε δ ⊥≡ + − ≈ ⋅ = =R R� � � �
ɶ ρ, ρ ∇ρ ∇ρ ∇ρ ∇   (8) 

After the transformation to the perturbed guiding-center variables and the above separation of 
δφɶ  and Aδ

�
ɶ , the resulting Lagrangian is 

 

 

( )

( )
( )

0

2

0

2

1

2

1

2

L

ˆp p A

p A A

A ,

µθ δ µ δφ

δφ δ δ

δ

= ⋅

 
+ ⋅ − − − Ω + 

  
 + − −  

− ⋅

A R

b R

R

� � �

� � �

�

ɺ

ɺ ɺ

ɶɶ

ɶ ɺ

+

             

( )
( )
( )
( )

2

0

1

2

......O

......O

......O

......O

ε

ε

ε

ε

−

 (9) 

 

 

where the formal order of each term in our expansion parameter is shown, and we have renamed 

Vε  as ε . The terms in Eq.(9) are separated into terms formally of order  2ε−
 through  

2ε . The 

key result of the separation in Eqs. (7) and (8) is that the only gyrophase dependent terms in Eq. 

(9) are at orders 
1ε  and higher. 

 

A Lie-transform perturbative treatment is applied to transform the phase-space coordinates 

( )�
µ θ→ = RZ Z ,U , , , to eliminate the gyrophase dependence in the Lagrangian of Eq. (9) 

using ɶ ≪
1

1δ φ ε~ . The derivation is similar to the standard noncanonical Hamiltonian Lie 

transform perturbation theory,
8.27

 but also has some differences. The coordinate transformation is 
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represented as an operator ( )T ε  as the action of which on the coordinates, distribution function, 

and Poincare-Cartan one-form γ  defined by Ldtγ = , where L  is the Lagrangian. 

 

( ) ( )

( ) ( ) ( )
1

Z Z ,U , , T Z,

f Z f Z T f Z ,

T dS.

µ θ ε

γ γ−

→ = =

= =

Γ ≡ = +

R
�

 
 

( )T ε  is further represented as a product of operators, each of which is formally an exponential 

of Lie derivative operators that acts only at successively higher orders 

 

( ) ( )
3 2 1

exp
n

n n

T ......TTT ,

T L .ε ε

=

=

 

 

Here the nL ’s are Lie derivatives (not to be confused with the Lagrangian), the action of which 

on a scalar and one form are 

( )

n n

n n

L g ,
Z

L g .
Z Z

β

β

ββ α

β αα

γγ
γ

∂Λ
Λ =

∂
 ∂∂ = −  ∂ ∂ 

   (10) 

 

Operators involving spatial derivatives are assigned different orders depending on the quantity 

they operate on.
20

 Spatial derivatives acting on a quantity at a given order in the Lagrangian of 

Eq.  (9) may demote that quantity zero, one or two orders. We therefore, write 

 

( ) ( ) ( )2

n n n na b c
L L L Lγ γ ε γ ε γ= + +  

 

The main results needed from the perturbation theory to obtain the Lagrangian up to second 

order are 

 

( ) ( )

( )

2 1 0 2 1 0 2 1 0

1 1 1 0 1 2 1

2 2 1 1

1

2

, , , , , ,

a c

a

dS ,

L L dS ,

L

γ

γ γ γ

γ γ

− − − − − −

−

Γ = +

Γ = − − +

Γ = −

   (11) 

 

The key steps in the evaluation of these are presented in the Appendix. 
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The resulting phase-space Lagrangian for the gyrocenter motion, in the canonical representation 

for the magnetic perturbations, up to second order is  

 

 

( )

( )

2

0 0

2

0 0

0 0

1

2

1 1

2 2

ˆL p p A

ˆ ,

µθ δ µ φ

ψ ψ
µ

 = + ⋅ − − − + Ω +   
∂ + Ψ Ω × ⋅ − Ω Ω ∂ 

A � � �
ɺɺ

ɶ ɶ ɶ

b R

b∇ ∇∇ ∇∇ ∇∇ ∇

 (12) 

 

where  

 ( )p A Aψ φ δ δ= − −� � �
ɶɶ ɶ , 

 ɶ d
θ

ψ θΨ = ∫ , 

 Ψ = Ψ Ψɶ - , 

and 

 
1

2
ɶ� dθ

π
Ψ = Ψ∫ . 

 

This is essentially the same result as has been obtained in the standard ordering,
8
 but now we 

have provided a justification for it in the combination of the edge ordering of Eq. (4) for the 

equilibrium and the ordering of Eq. (3) for the perturbations, which is relevant to the edge of 

MFE devices. 

  
From the Lagrangian of Eq. (12), we can verify some familiar results. Up to first-order the 

equations of motion that result from the R  Euler-Lagrange equations give contain the B∇ , 

curvature, and E B×  drifts. The parts of the Lagrangian of Eq. (12) up to first order are 

 

 ( )
2

2 0 1 0 0

1

2
, , gc

ˆL p p A ,µθ δ µ φ−

  = + ⋅ − − − + Ω +      
� � �

ɺɺA b R  

 

and the R  Euler-Lagrange equations give  

 

 ( ) ( )20 0 0 0 0

0

1ˆ ˆ ˆ ˆp A p Aδ φ µ δ
 = − + × + Ω + − ⋅  Ω

R
� � � �

ɺ b b b b∇ ∇ ∇ . (13) 

 

The Vlasov equation for the evolution of the gyrocenter distribution function, neglecting 

collisions, can be obtained in the standard way using the fact that the absence of dependence of 

Lagrangian on θ  decouples the gyrophase dependent and independent parts of the Vlasov 

equation
5
 

0i i
R i

F F
F U

t U

∂ ∂
+ ⋅ + =

∂ ∂
R

�

�

ɺ ɺ∇∇∇∇ . (14) 

In a self-consistent model, the gyrokinetic species described by the above equations will 

contribute to the field equations through its density 
i

n and current iJ . These are obtained from 
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i
F  via the “pullback transformation”

5
 and integration over velocity space. The results are for the 

density 
i

n  

( ) ( ) 1 1i
i i R R i

F
n dZ F , Fδ µ δψ

µ
⊥ ⊥

  ∂ Ψ  = Ω + − + + ⋅ ×   Ω ∂ Ω Ω   
∫ R x R

ɶ
ɶ

0
b∇ ∇∇ ∇∇ ∇∇ ∇ρ   (15) 

and 

( ) .� �
ɶɶ

0
R ρ x b∇ ∇∇ ∇∇ ∇∇ ∇i

i i i R R i

F
J Z e d p F Fδ δ δψ δ

µ
⊥ ⊥

 ∂ 
≈ Λ + − + + Ψ ⋅ × 

∂ 
∫   (16) 

Inserting Eq. (15)  and (16) respectively into the Poisson equation and Ampere’s law, for the 

case of a single gyrokinetic ion species, and neutralizing electrons gives 

 

( )

2

e
4

1 1
4 i

i R R i

en

F
Ze dZ F F

φ π

π δ δψ
µ

⊥ ⊥

∇ =

  ∂ Ψ − Ω + − + + ⋅ ×   Ω ∂ Ω Ω   
∫ R x

ɶ
ɶ

0
bρ ∇ ∇∇ ∇∇ ∇∇ ∇

 (17) 

and 

 

( ) ( ) ( )

( )

2 2

1
4 4

1 1

e e i

i
i R R i

c A e m dVF p Ze m

F
dZ p F F .

π π

δ δψ
µ

⊥ ⊥

∇ = − ×

  ∂ Ψ   Ω + − + + ⋅ ×     Ω ∂ Ω Ω  

∫

∫ x

� �

�

ɶ
ɶ

0
R ρ b∇ ∇∇ ∇∇ ∇∇ ∇

 (18) 

 

Equations (12) and the associated Euler-Lagrange equations, along with Eqs.  (14),  (17),  and 

(18) constitute a closed gyrokinetic Vlasov-Maxwell system valid for strong-gradient regions in 

a magnetized plasma, under the small velocity ordering of Eq. (3)  and the strong-gradient 

ordering of Eq. (4).  

 

III. Summary 

We have derived the (low- β  ) toroidal electromagnetic gyrokinetic equations in a new more 

general ordering which allows for large perturbation amplitudes and is appropriate for MFE edge 

plasma conditions. While the resulting equations are similar to already published, the present 

work is valuable because it provides a theoretical basis for the application of these equations in 

strong-gradient regions in magnetized plasmas, for example in the edge region and internal 

transport barriers in a tokamak. In particular, our ordering and derivation show that the equations 

are valid in such regions, while previous Hamiltonian derivations used an ordering that precluded 

large perturbations. 

 

Also, the use of a strong-gradient ordering of the plasma profiles relative to the magnetic-field 

inhomogeneities  results in equations valid to second order without the many finite-gyroradius 

and beating terms that must be kept in the more common “core-plasma” orderings [calvo]. Thus, 

the simplicity of the more familiar second-order equations is maintained. Because the equations 

are valid to second order and come from a Hamiltonian formalism, exact energy and momentum 

conservation relations can easily be obtained from Noether’s theorem variational formulations  
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[Sugama]. This is an advantage over iterative derivations, for which the conservation relations 

that result are typically approximate rather than exact. 

 

We anticipate that our equations will be useful as a basis for simulation models edge and 

screapeoff layer regions as well as internal transport barriers in tokamaks, where the separation 

between the profile and gyroradius scales is relatively modest, and the significant fluctuations 

have wavelengths (of the order of 10-100 gyroradii) that may be comparable to the scale of 

profile variations. 

 

Appendix 

 

Here, we show the key steps in the calculations leading from Eqs. (9) and (11) to Eq. (12). 

 

For orders    ε
−2

,     ε
−1

, and   ε
0
 in Eq. (11), we can choose 

 

2 1 0 2 1 0

2 1 0 0

, , , ,

, ,

,

dS .

γ− − − −

− −

Γ =

=
 

At first order, we have 
 

( ) ( )1 1 1 1 0 1 2 10
a c

L L dS ,γ γ γ γ−= = Γ = − − +

 

which yields 

( )

1 0 1

0

1
1

1 1

1
1

1
1

1
1 1

1

0

p

p

ˆ S ,

S
g ,

p

g S ,

S
g ,

S
g ,

S
g p A g ,

t

µ

θ

µ

∇

θ

µ

δ δψ

⊥ = − ×
Ω

∂
= −

∂

=

∂
= −

∂
∂

=
∂

∂
= + Ω + −

∂

g b

�

�

�

�

�

� �
ɶ

∇

−

 

where 

( )p A A .δψ δφ δ δ≡ − −� � �
ɶɶ ɶ  

these, in turn, result in  



12 

( )1 1
1

S S
p A S .

t
δ ∇ δψ

θ

∂ ∂
+ − − Ω =

∂ ∂� � �
ɶ  (19) 

In the solution of Eq.(19) for the first-order gauge function 
1

S  we use 
1 1

S t ~ Sθε∂ ∂ Ω∂ .  
1

S  is 

needed to get the first-order generating functions and the expression for the second-order parts of 

the Lagrangian.  

 

( )
0

1 1

slow

1

i i

i

dS S
,

dt

S ,

,

d ,

p A A

θ

θ

δψ
θ

θ δψ

δψ δφ δ δ

  ∂ − Ω =   ∂

≈ − Ψ Ω

Ψ ≡ Ψ − Ψ

Ψ =

≡ − −

∫

� � �

ɶ

ɶ

ɶ

ɶ

ɶɶ ɶ

 

( )

( )
( )

( )

0

0

1 0

1

1

1

1

1

1

p

i i

i

i i

i

ˆ ,

g A ,

g ,

g ,

g ,

p A A ,

,

d ,

A A A ,

A d A .

µ

θ

θ

θ

θ

θ

∇

δψ

δ

µ

δ

θ δφ

θ δ

⊥ = × Ψ Ω
Ω

= −∆ Ω

= − Ψ Ω

= Ω

∂ Ψ
= −

Ω ∂

Ψ ≡ Φ − − ∆

Φ ≡ Φ − Φ

Φ =

∆ = ∆ − ∆

∆ =

∫

∫

g b

�

�

�

�

� � �

� � �

� �

ɶ

ɶ

ɶ

ɶ

ɶ

ɶɶ ɶ

ɶ

ɶ

ɶ

ɶ

∇

 
 

The resulting Poincare-Cartan one-form (phase-space Lagrangian) for the gyrocenter motion, in 

the canonical representation for the magnetic perturbations, up to second order is  
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( )
0

2

0

2

0

1

2

1 1 1 1

2

d

ˆp d d p A dt

ˆ A dt

µ θ δ µ δ φ

ψ
ψ ∇ δ

µ

Γ = ⋅

 
+ ⋅ − − − Ω + 

  
 ∂    Ψ   + + × ⋅ + Ψ        Ω ∂ Ω Ω Ω  

A R

b R

b

� � �

� �

ɶ
ɶɶ

+

∇ ∇∇∇∇

 (20) 

 

 

The last (∇ � ) term in the square brackets in Eq. (20) can be neglected because it is third order in 

ε . 
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